
Formal Proposal:
APL Array Notation

Note: This proposal's specification for scoping in literal namespaces has been
changed based on feedback received after its initial publication. Affected sections
are marked by a vertical bar on the left, with removed text struck through and
added text underlined.

One of the defining features of the APL language is the ability to denote numeric
vectors directly through juxtaposition — separating the elements by spaces, as in
0 1 1 2 3 5 8 . The notation for character “vectors” is similar to that for “strings”
in most other languages, using quotes to denote the start and end of a list of char‐
acters. When generalised arrays were added to the language in the early 1980s,
the most popular APL dialects extended the vector notation to allow nested arrays
to be written using so-called strand notation, allowing the juxtaposition of sub-
expressions producing arrays to form a one-dimensional array — as in
(2+2) (FOO 42) MAT

Strand notation works well for small, relatively simple one-dimensional arrays. As
soon as arrays are too large to be represented on a single line of code, deeply
nested, rank greater than one, or (in APL systems that support them) contain
namespaces or objects, APL requires the use of primitives or system functions to
assemble them from simple components.

The flexibility of the APL language has allowed many APL programmers to work
around the issue, either by implementing custom array notations or by using the
ability of most APL interpreters to simply store arrays within saved workspaces
without having an actual source form of the data. Within specific applications, do‐
main specific notations can be very successful, but readability is poor for anyone
not trained in the specific variation used — or who is missing the tooling required
to interpret them — as well as sometimes having significant run-time cost.

Recently, the need for a better notation for arrays has grown within the Dyalog APL
community:

• The switch to text-based sources means that arrays that represent constants,
enumerations or initial values — that arguably constitute part of the source of
an application — need a textual representation if they are to be managed us‐
ing the same tools as functions and operators.

• The increased use of namespaces and name/value pairs as arguments to both
user-defined and system functions makes the lack of a good notation for name‐
spaces painful.

Dyalog Ltd intends to implement core language support for a notation that makes it
possible to write most arrays literally, without requiring the use of primitive func‐
tions, over multiple lines of source where this increases readability. It can be used
to write nested arrays, and arrays of rank greater than one. The notation also de‐
scribes many namespaces/objects, providing both inline and anonymous definitions.

Array notations similar to that proposed here are currently supported in some
newer implementations such as dzaima/APL and the APL-derivative BQN.

2023-05-05 1/y)

Experimental implementations using APL models are available within some tools in
the Dyalog eco-system, such as the Link tool which supports the representation of
code and data in Unicode text files and the functions Serialise and Deserialise
within the namespace ⎕SE.Dyalog.Array . You can also try it out in the interactive
online sandbox.

Providing feedback

Dyalog is keen to have feedback from the array language community on the nota‐
tion proposed here so that we can feel confident about the design, before we pro‐
ceed with our implementation. Our hope is that we will be able to keep the differ‐
ences between future array notations within the family of array languages to a min‐
imum.

We will monitor the APL Orchard chatroom, the APL Farm's #apl channel, the r/apl
and r/apljk subreddits, and the comp.lang.apl newsgroup for feedback. (See APL
Wiki for information about these forums.) In addition, we have created a topic in
our own forum. If you prefer not to comment in public, please send comments by
e-mail. Dyalog will update the discussion page for APL Wiki's Array notation design
considerations article to contain a record of significant feedback.

Overview

The fundamental mechanism underlying the proposed notation is to group multiple
lines, or statements separated by the traditional APL statement separator (diamond
⋄), within parentheses and square brackets. Statements within parentheses ()
represent vectors — roughly equivalent to stranding — while statements within
square brackets [] represent higher rank arrays, where the vector is subjected to
a Mix. The notation also supports namespaces or dictionaries, where zero or more
statements in the form name:value are collected within parentheses () .

Examples

A very common technique used for array construction in APL is repeated concate‐
nation resulting in the desired value being held in a variable (z in the below exam‐
ples). Array notation should make it possible to express the complete array directly.
In addition, the traditional technique sometimes involves the creation of helper
variables as a side effect.

Note that for all Dyalog APL examples, monadic ⊃ is Mix (that is, using ⎕ML←3) for
readability outside the Dyalog community.

In the examples below, the traditional method of creating an array is marked Ⓣ, the
proposed APL array notation is marked Ⓐ, and the minimal-style boxed display out‐
put (as provided by]disp and disp from the dfns workspace) is marked Ⓑ.

2023-05-05 2/y)

https://abrudz.github.io/aplan/
https://abrudz.github.io/aplan/
https://abrudz.github.io/aplan/
https://abrudz.github.io/aplan/
https://aplwiki.com/wiki/Chat_rooms_and_forums
https://aplwiki.com/wiki/Chat_rooms_and_forums
https://aplwiki.com/wiki/Chat_rooms_and_forums
https://aplwiki.com/wiki/Chat_rooms_and_forums
https://forums.dyalog.com/viewtopic.php?f=13&t=1871
https://forums.dyalog.com/viewtopic.php?f=13&t=1871
https://forums.dyalog.com/viewtopic.php?f=13&t=1871
https://forums.dyalog.com/viewtopic.php?f=13&t=1871
mailto:arraynotation@dyalog.com
mailto:arraynotation@dyalog.com
mailto:arraynotation@dyalog.com
mailto:arraynotation@dyalog.com
https://aplwiki.com/wiki/Talk:Array_notation_design_considerations
https://aplwiki.com/wiki/Talk:Array_notation_design_considerations
https://apl.wiki/Mix
https://apl.wiki/Mix
https://apl.wiki/Mix
https://apl.wiki/Mix
https://dfns.dyalog.com/n_disp.htm
https://dfns.dyalog.com/n_disp.htm
https://dfns.dyalog.com/n_disp.htm
https://dfns.dyalog.com/n_disp.htm

Basic arrays

Vector of numeric vectors on a single line

(0 6 1 8) (1 4 1 4 2) (2 7 1 8 2 8) (3 1 4 1 5) Ⓣ
(0 6 1 8 ⋄ 1 4 1 4 2 ⋄ 2 7 1 8 2 8 ⋄ 3 1 4 1 5) Ⓐ
┌───────┬─────────┬───────────┬─────────┐
│0 6 1 8│1 4 1 4 2│2 7 1 8 2 8│3 1 4 1 5│
└───────┴─────────┴───────────┴─────────┘

Ⓑ

Vector of numeric vectors split over two lines

z← (0 6 1 8) (1 4 1 4 2)
z,←(2 7 1 8 2 8) (3 1 4 1 5) Ⓣ
(0 6 1 8 ⋄ 1 4 1 4 2
 2 7 1 8 2 8 ⋄ 3 1 4 1 5) Ⓐ
┌───────┬─────────┬───────────┬─────────┐
│0 6 1 8│1 4 1 4 2│2 7 1 8 2 8│3 1 4 1 5│
└───────┴─────────┴───────────┴─────────┘

Ⓑ

Vector of character vectors, one on each line

z← ⊂'Three'
z,←⊂'Blind'
z,←⊂'Mice'

Ⓣ

('Three'
 'Blind'
 'Mice')

Ⓐ

┌─────┬─────┬────┐
│Three│Blind│Mice│
└─────┴─────┴────┘

Ⓑ

Numeric matrix

z←⍉⍪0 6 1 8
z⍪← 1 4 1 4
z⍪← 2 7 1 8
z⍪← 3 1 4 2

Ⓣ

[0 6 1 8
 1 4 1 4
 2 7 1 8
 3 1 4 2]

Ⓐ

0 6 1 8
1 4 1 4
2 7 1 8
3 1 4 2

Ⓑ

2023-05-05 3/y)

Column matrix

z←⍪⊂'Three'
z⍪←⊂'Blind'
z⍪←⊂'Mice'

Ⓣ

[⊂'Three'
 ⊂'Blind'
 ⊂'Mice']

 or
[('Three'⋄)
 ('Blind'⋄)
 ('Mice' ⋄)]

Ⓐ

┌─────┐
│Three│
├─────┤
│Blind│
├─────┤
│Mice │
└─────┘

Ⓑ

2023-05-05 4/y)

More complex arrays

Vector of matrices

a←⍉⍪0 0 1
a⍪← 1 0 1
a⍪← 0 1 1
z←,⊂a
a←⍉⍪0 1 1
a⍪← 1 1 0
a⍪← 0 1 0
z,←⊂a
a←⍉⍪0 1 1 1
a⍪← 1 1 1 0
z,←⊂a
a←⍉⍪0 1 1 0
a⍪← 1 0 0 1
a⍪← 0 1 1 0
z,←⊂a

Ⓣ

([0 0 1
 1 0 1
 0 1 1]

 [0 1 1
 1 1 0
 0 1 0]

 [0 1 1 1
 1 1 1 0]

 [0 1 1 0
 1 0 0 1
 0 1 1 0])

Ⓐ

┌─────┬─────┬───────┬───────┐
│0 0 1│0 1 1│0 1 1 1│0 1 1 0│
│1 0 1│1 1 0│1 1 1 0│1 0 0 1│
│0 1 1│0 1 0│ │0 1 1 0│
└─────┴─────┴───────┴───────┘

Ⓑ

2023-05-05 5/y)

Table with numeric and text columns

z←⍉⍪0 'OK'
z⍪← 1 'WS FULL'
z⍪← 2 'SYNTAX ERROR'
z⍪← 3 'INDEX ERROR'
z⍪← 4 'RANK ERROR'

Ⓣ

[0 'OK'
 1 'WS FULL'
 2 'SYNTAX ERROR'
 3 'INDEX ERROR'
 4 'RANK ERROR']

Ⓐ

┌─┬────────────┐
│0│OK │
├─┼────────────┤
│1│WS FULL │
├─┼────────────┤
│2│SYNTAX ERROR│
├─┼────────────┤
│3│INDEX ERROR │
├─┼────────────┤
│4│RANK ERROR │
└─┴────────────┘

Ⓑ

Rank 3 numeric array

a←⍉⍪3 1 4
a⍪← 1 5 0

b←⍉⍪2 7 0
b⍪← 2 0 0
z←a,[0.5]b

Ⓣ

[[3 1 4
 1 5 0]

 [2 7 0
 2 0 0]]

Ⓐ

3 1 4
1 5 0

2 7 0
2 0 0

Ⓑ

2023-05-05 6/y)

Rank 3 numeric array relying on automatic padding with fill ele‐
ment

a←,⊂3 1 4
a,←⊂1 5
a←⊃a
b←,⊂2 7
b,← 2
b←⊃b
z←⊃a b

Ⓣ

[[3 1 4
 1 5]

 [2 7
 2]]

Ⓐ

3 1 4
1 5 0

2 7 0
2 0 0

Ⓑ

Matrix of simple and nested vectors, with dynamic values

z←⍉⍪'fns' ((0 1)(0.7 0)(0.7 0)×size)
z⍪← 'fnd' ((0 1)(0 0)(0 0)×size)
z⍪← 'lines'((0 0)(0.7 0)(0.7 0)×size)
z⍪← 'lnd' ((0 0)(0 0)(0 0)×size)

Ⓣ

['fns' ((0 1 ⋄ 0.7 0 ⋄ 0.7 0)×size)
 'fnd' ((0 1 ⋄ 0 0 ⋄ 0 0)×size)
 'lines'((0 0 ⋄ 0.7 0 ⋄ 0.7 0)×size)
 'lnd' ((0 0 ⋄ 0 0 ⋄ 0 0)×size)]

Ⓐ

The last of the above examples shows the use of an embedded computation — us‐
ing multiplication and a reference to an external variable. Although this can be ex‐
tremely useful within an application, systems can prohibit this when reading exter‐
nal source files, to avoid code injection attacks (in the same way that macros can
be disabled when loading text documents and spreadsheets).

Namespaces

In the examples below, the traditional method of creating an object is marked Ⓧ for
APLX and Ⓓ for Dyalog APL, while the proposed APL array notation is marked Ⓐ. In
addition, the closest JavaScript equivalent is marked Ⓙ.

2023-05-05 7/y)

Empty namespace

∇z{}∇ Ⓧ
⎕NS⍬ Ⓓ
() Ⓐ
{} Ⓙ

Vector of namespaces

⍎¨⎕FX¨('a{' '}')('b{' '}')('c{' '}') Ⓧ
⎕NS¨⍬⍬⍬ Ⓓ
()()() or (() ⋄ () ⋄ ()) Ⓐ
[{},{},{}] Ⓙ

Namespace with character vector member

∇z{
 x←'hello'
}

Ⓧ

z←⎕NS⍬
z.x←'hello' Ⓓ
(x:'hello') Ⓐ
{x:'hello'} Ⓙ

Namespace with character matrix member

∇z{
 x←⊃'hello' 'world'
}

Ⓧ

z←⎕NS⍬
z.x←⍉⍪'hello'
z.x⍪← 'world'

Ⓓ

(x:['hello'
 'world'])

Ⓐ
{x:['hello',
 'world']}

Ⓙ

2023-05-05 8/y)

Nested namespace structure with matrix member

∇a{
 x←⊃'hello' 'world'
}
∇b{
 y
}
z←⎕NEW b
z.y←a

Ⓧ

z←⎕NS⍬
z.y←⎕NS⍬
z.y.x←⍉⍪'hello'
z.y.x⍪← 'world'

Ⓓ

(y:(x:['hello'
 'world']))

Ⓐ
{y:{x:['hello',
 'world']}}

Ⓙ

Namespace with multiple members

∇z{
 FirstName←'Wolfgang'
 LastName←'Mozart'
 Age←35
}

Ⓧ

z←⎕NS⍬
z.FirstName←'Wolfgang'
z.LastName←'Mozart'
z.Age←35

Ⓓ

(
 FirstName:'Wolfgang'
 LastName:'Mozart'
 Age:35
)

Ⓐ

{
 FirstName:'Wolfgang',
 LastName:'Mozart',
 Age:35
}

Ⓙ

2023-05-05 9/y)

Technical specification

The notation consists of syntax that was invalid in every mainstream APL imple‐
mentation before its introduction, thus causing no issues for backwards compatibil‐
ity. The added syntax consists of these constructs that are currently SYNTAX
ERRORs:

• broken round parentheses/parenthesised name–value pair: (…)
• broken square brackets: […]
• empty round parentheses: ()

where broken means interrupted by one or more statement separators (diamonds
⋄ or line breaks).

• A statement here means a value expression, optionally separated with a colon
(:) from a preceding valid APL identifier.

• Empty statements make parentheses and brackets broken, but do not other‐
wise influence the result.

• A broken round parenthesis creates a namespace if every* separated state‐
ment is a name–value pair; every such pair defines a member of the resulting
namespace.

• A parenthesised name–value pair creates a namespace; the pair defines the
sole† member of the resulting namespace.

• A broken round parenthesis creates a vector if every* separated statement is a
value expression; every such statement forms an element in the resulting vec‐
tor.

• A broken square bracket creates an array where every separated statement
forms a major cell in the resulting array (equivalent to Mix applied to a vector

of these), with scalars interpreted as one-element vectors.‡

• An empty round parentheses creates a new namespace — equivalent to Dyalog
APL’s (⎕NS 0⍴⊂'') or shorthand (⎕NS⍬) .

• A name–value pair consists of a valid APL identifier, followed by a colon (:)

and a value expression§.

* A mixture of name–value pairs and value expressions is an error.

† Besides for system values like ⎕IO .

‡ For reasons explained below under Minimum rank of items in square brackets, it
is proposed that a minimum rank of 1 is imposed on each cell within square brack‐
ets. At the time this document was written, the array notation in dzaima/APL did
not implement this rule.

§ See below under Additional content types in namespaces for details on values
that are not given as value expressions.

Statement separators encapsulated in a direct function/dfn/lambda {} or further
contained in array notation do not contribute to a parenthesis or bracket being con‐
sidered broken. For example, in ({1=⍵:'y' ⋄ 'n'}?2) the ⋄ belongs to the inner
function/dfn/lambda curly braces, and therefore cannot affect the surrounding
parenthesis.

2023-05-05 10/y)

https://apl.wiki/Mix
https://apl.wiki/Mix

Formal syntax

The array notation can be described using Extended Backus–Naur form, where an
expression is any traditional APL expression:

value ��= expression | list | block | space
list ��= '(' ((value sep)+ value? | (sep value)+ sep?) ')'
block ��= '[' ((value sep)+ value? | (sep value)+ sep?) ']'
space ��= '(' sep? (name ':' value (sep name ':' value)*)? sep? ')'
sep ��= [⋄#x000A#x000D#x0085]+

The list of sep values is for illustration purposes and is to match the line breaks
recognised by the APL implementation. However, these three sep values should be
handled when reading Unicode text files.

2023-05-05 11/y)

Syntax diagram

2023-05-05 12/y)

Minimum rank of items in square brackets

As noted above, the proposal suggests that each item within square brackets is co‐
erced to a minimum rank of 1 before assembly of the complete array, while the ex‐
isting implementation in dzaima/APL allows scalars. The argumentation is purely
utilitarian: it is significantly easier to write single-column matrices if vectors are
assumed. However, utility (or elegance) is an important design consideration for ar‐
ray notation. Allowing statements in square brackets to have rank 0 provides two
ways to denote vectors using parentheses and square brackets.

In the following examples, minimum rank of statements in square brackets is indi‐
cated as a circled number, with the traditional method of creating an array marked
Ⓣ:

Numeric vector

[1
 2]

 or
(1
 2)

⓪
(1
 2)

①
z←,1
z,←2 Ⓣ

Numeric column matrix

[[1 ⋄]
 [2 ⋄]] or

[(1 ⋄)
 (2 ⋄)] ⓪

[1
 2]

①
z←⍪1
z⍪←2 Ⓣ

Vector of character vectors

[⊂'hello'
 ⊂'world'] or

('hello'
 'world')

⓪
('hello'
 'world')

①
z←,⊂'hello'
z,←⊂'world' Ⓣ

2023-05-05 13/y)

Column matrix of character vectors

[('hello' ⋄)
 ('world' ⋄)] ⓪
['hello'
 'world']

①
z←⍉⍪'hello'
z⍪← 'world'] Ⓣ

Scoping in literal namespaces

The authors expect the literal notation for namespaces to become widely used at
runtime. Contrast this with the notation for nested or high rank arrays, which we
envision mainly as a mechanism for representing arrays that are part of an applica‐
tion or used during its initialisation.

For use within an application at runtime, the ability to define values in literal name‐
spaces in terms of already existing names is extremely valuable. Since the name‐
space is in the process of being created, it will rarely be useful to reference other
namespace members. Furthermore, a namespace should be considered unordered,
as opposed to Dyalog's existing :namespace … :Endnamespace notation. The latter
is often called a script and is executed in order, just like the script for a theatric
play. It is proposed that value expressions should be interpreted as if they were
running in the surrounding scope. However, one might want to use temporary vari‐
ables in the creation of such values, and these should not leak out into the sur‐
rounding scope.

Therefore, the proposal is that value expressions are evaluated much as expres‐
sions in Dyalog dfns; the surrounding scope is visible, but new names that are cre‐
ated become local to the expression, and are not shared between individual value
expressions in the same namespace declaration: Any assignments done in a value
expression will therefore persist in the surrounding scope:

 long←'bobby'
 short←'jack'
 ns←(short:'jill' ⋄ inner:short∘.=short←3↑long)
 ns.inner
1 0 1
0 1 0
1 0 1
 short ⍝ unaffected by inner assignment
jack
 ns.short ⍝ ditto
jill
 short ⍝ altered by inner assignment
bob
 ns.short ⍝ unaffected by inner assignment
jill

2023-05-05 14/y)

Additional content types in namespaces

An APL implementation can support code (that is, functions and operators, of vari‐
ous types, and scripted objects, for example :Class definitions) as members of
namespaces. If such exists, the array notation for namespaces can accommodate it.
Direct functions/dfns/lambdas and derived/tacit/point-free functions can be in‐
cluded as member values without additional effor after the : name–value separa‐
tor, just as they are currently used as values in assignment. Scripted definitons can
also be allowed after the : even though they do not otherwise return a result, and
traditional defined functions ("tradfns") can be included surrounded by dels ∇ as
they often are in function listings:

 ns←{
 42∊⍵:100
 (
 dfn:{(+⌿⍵)÷≢⍵}
 tacit:+⌿÷≢
 obj: :namespace
 val←4
 :Endnamespace
 tradfn: ∇ (y y)←tradfn y
 ∇
 recursive: ∇ 42
)
 } 10
 ns.tradfn ns.recursive
100 100

Note that it is the final ∇ that disambiguates a function definition from a recursive
call, as a value can be computed by a recursive call to the surrounding dfn:

 ∇ (y y)←tradfn y
 ∇
 y←42
 ns←{
 42∊⍵:100
 (
 recursive: ∇(y y)←tradfn y
)
 } 10
 ns.recursive
100

The apparent double naming in tradfn: ∇ (y y)←tradfn y is necessary because
a namespace can have a named reference to a function of a different name.
Compare the following code which has worked in Dyalog APL for many years:

2023-05-05 15/y)

 ∇ (y y)←tradfn y
 ∇
 ns←⎕NS⍬
 ns.rename←tradfn
 ⎕EX'tradfn'
 ns.rename 100
100 100
 ⎕CR'ns.rename'
 (y y)←tradfn y

Syntactically, this would make it easy to populate a namespace with a reference to
a niladic function:

 ns←(
 nilad:∇ r←nilad
 r←42
 ∇
)

While it is possible to create such a namespace using current Dyalog APL notation,
it requires rather involved code.

Additional considerations

• It would be possible to allow a shorter form when including a tradfn in a
namespace under its own name. This could be done by omitting the name: la‐
bel, making the following two namespaces equivalent:

(
 tradfn:∇(y y)←tradfn y
 ∇
)

 ⇔ 
(
 ∇(y y)←tradfn y
 ∇
)

• The final decisions on the minimum cell rank within square brackets and the
scope of value expressions are still considered open.

A number of other design questions that have been answered in the process of
reaching this proposal are preserved on APL Wiki.

Closing remarks

Several people have contributed significant amounts of time to the evolution of an
array notation worthy of inclusion as a core component in future APL, adding value
to APL notation as a tool of thought. For details, see APL Wiki. We sincerely hope
that you will give this proposal your attention and provide feedback.

2023-05-05 16/y)

https://aplwiki.com/wiki/Array_notation_design_considerations#Specific_considerations
https://aplwiki.com/wiki/Array_notation_design_considerations#Specific_considerations
https://aplwiki.com/wiki/Array_notation#History
https://aplwiki.com/wiki/Array_notation#History

